Telegram Group & Telegram Channel
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 SpatialLM – это новый инструмент, представляющий собой 3D крупномасштабную языковую модель, разработанную для обработки точечных облаков и генерации структурированных 3D представлений.

Он сочетает в себе возможности обработки неструктурированных 3D геометрических данных с высокоуровневым семантическим пониманием, что открывает новые возможности для разработки в различных областях.

Обработка 3D данных: SpatialLM способен анализировать точечные облака, полученные из монокулярных видео, RGBD изображений и LiDAR-датчиков, что делает его универсальным инструментом для работы с данными из разных источников.
Структурированное представление сцен: Модель генерирует подробные 3D описания, включая распознавание архитектурных элементов (стены, двери, окна) и создание ориентированных ограничивающих рамок для объектов.
Преимущества перед аналогами: В отличие от других методов, требующих специализированного оборудования для сбора данных, SpatialLM работает с широким спектром входных данных, что значительно снижает порог входа для разработчиков.
Полезность для разработчиков: Интеграция SpatialLM позволяет ускорить разработку приложений в таких сферах, как робототехника, автономное вождение и анализ 3D сцен, благодаря возможности быстро и точно интерпретировать сложные пространственные данные.
Современные технологии: Основанный на передовых языковых моделях (например, Llama и Qwen) и использующий SceneScript и TorchSparse, SpatialLM обеспечивает высокую производительность и точность, что делает его конкурентоспособным решением на рынке.
Открытый исходный код: Благодаря открытости проекта, разработчики могут свободно адаптировать и улучшать SpatialLM под специфические задачи, что стимулирует инновации и развитие новых стартапов.

SpatialLM демонстрирует, как современные подходы к обработке 3D данных и глубокое обучение могут быть объединены для создания мощных инструментов, способных значительно расширить возможности современных приложений. Этот инструмент уже сегодня помогает разработчикам реализовывать сложные проекты, требующие точного пространственного понимания, и имеет все шансы стать важной частью экосистемы разработки в ближайшем будущем.

Project manycore-research.github.io/SpatialLM/
Code github.com/manycore-research/SpatialLM
Models https://huggingface.co/manycore-research



tg-me.com/machinelearning_interview/1667
Create:
Last Update:

🔥 SpatialLM – это новый инструмент, представляющий собой 3D крупномасштабную языковую модель, разработанную для обработки точечных облаков и генерации структурированных 3D представлений.

Он сочетает в себе возможности обработки неструктурированных 3D геометрических данных с высокоуровневым семантическим пониманием, что открывает новые возможности для разработки в различных областях.

Обработка 3D данных: SpatialLM способен анализировать точечные облака, полученные из монокулярных видео, RGBD изображений и LiDAR-датчиков, что делает его универсальным инструментом для работы с данными из разных источников.
Структурированное представление сцен: Модель генерирует подробные 3D описания, включая распознавание архитектурных элементов (стены, двери, окна) и создание ориентированных ограничивающих рамок для объектов.
Преимущества перед аналогами: В отличие от других методов, требующих специализированного оборудования для сбора данных, SpatialLM работает с широким спектром входных данных, что значительно снижает порог входа для разработчиков.
Полезность для разработчиков: Интеграция SpatialLM позволяет ускорить разработку приложений в таких сферах, как робототехника, автономное вождение и анализ 3D сцен, благодаря возможности быстро и точно интерпретировать сложные пространственные данные.
Современные технологии: Основанный на передовых языковых моделях (например, Llama и Qwen) и использующий SceneScript и TorchSparse, SpatialLM обеспечивает высокую производительность и точность, что делает его конкурентоспособным решением на рынке.
Открытый исходный код: Благодаря открытости проекта, разработчики могут свободно адаптировать и улучшать SpatialLM под специфические задачи, что стимулирует инновации и развитие новых стартапов.

SpatialLM демонстрирует, как современные подходы к обработке 3D данных и глубокое обучение могут быть объединены для создания мощных инструментов, способных значительно расширить возможности современных приложений. Этот инструмент уже сегодня помогает разработчикам реализовывать сложные проекты, требующие точного пространственного понимания, и имеет все шансы стать важной частью экосистемы разработки в ближайшем будущем.

Project manycore-research.github.io/SpatialLM/
Code github.com/manycore-research/SpatialLM
Models https://huggingface.co/manycore-research

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/machinelearning_interview/1667

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

If riding a bucking bronco is your idea of fun, you’re going to love what the stock market has in store. Consider this past week’s ride a preview.The week’s action didn’t look like much, if you didn’t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.

How Does Bitcoin Work?

Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”

Machine learning Interview from kr


Telegram Machine learning Interview
FROM USA